L'Oxyde Double TeVO₄ II. Structure Cristalline de TeVO₄-β-Relations Structurales

GEORGES MEUNIER, JACQUES DARRIET ET JEAN GALY

Service de Chimie Minérale Structurale de l'Université de BORDEAUX I, associé au C.N.R.S., 351 cours de la Libération, 33-Talence, France

Received January 11, 1972

 β -TeVO₄ crystallizes in the monoclinic system with the space group $P2_1/c$ and the parameters: a = 4.379 Å, b = 13.502 Å, c = 5.446 Å, and $\beta = 91.72^{\circ}$. Vanadium occupies the center of a square pyramid of oxygens, an extra oxygen is at V-O = 2.77 Å. These distorted octahedra share corners forming puckered sheets parallel to (010). The sheets are held together by $[Te_2O_6]^{4-}$ groups in which tellurium is one-side co-ordinated by four oxygen atoms.

Dans un précédent article, nous avons décrit la synthèse de l'oxyde double TeVO₄; le tellure et le vanadium s'y trouvent au degré d'oxydation +IV (1). Deux variétés cristallines ont été isolées : l'une, dite de basse température, et appelée phase α , cristallise dans le système monoclinique avec une structure inédite (1), l'autre, dite de haute température, appelée β , cristallise dans le même système. La détermination de sa structure cristalline fait l'objet de cet article.

Determination de la Structure

Des monocristaux de TeVO₄ β ont été préparés par fusion ou par transport en présence de TeCl₄ (1). Une fine aiguille, de couleur verte, obtenue par fusion a été utilisée pour la détermination structurale.

L'ensemble des données cristallographiques de TeVO₄ β a été précisé antérieurement (*l*), les paramètres de la maille cristalline sont: $a = 4.379 \pm 0.002$ Å, $b = 13.502 \pm 0.004$ Å, $c = 5.446 \pm 0.002$ Å, et $\beta = 91.72^{\circ} \pm 0.05^{\circ}$. Le groupe spatial est $P2_1/c$, le nombre de motifs TeVO₄ par maille Z = 4 ($d_{exp} = 4.94 \pm 0.04$ et $d_x = 5.01$).

Les réflexions hk0 à hk4 ont été enregistrées à l'aide d'une chambre de Weissenberg intégrante. La radiation utilisée était CuK_{α} . L'intensité des taches a été mesurée par compraison avec une Copyright © 1973 by Academic Press, Inc. All rights of reproduction in any form reserved. échelle photographique. Le cristal de dimension $0.02 \times 0.03 \times 0.12$ mm était suffisamment petit pour que puissent être négligées les corrections dues à l'absorption, le cristal tournant suivant l'axe de l'aiguille. Seules ont été effectuées les corrections de Lorentz et de polarisation.

Les calculs ont été réalisées sur IBM 360-40 à l'aide de programmes mis au point par MM. M. Saux et J. Galy.

Position des atomes

Les coordonnées des atomes de tellure et de vanadium ont été obtenues à partir de la fonction de Patterson P(uvw). Les positions des quatre atomes d'oxygène ont été déterminées par calcul de répartition de densités électroniques et de fonctions différences successives. Le facteur de reliabilité est alors de l'ordre de R = 0.20.

Affinement de la structure

Après plusieurs cycles d'affinement effectués à l'aide d'une méthode de moindres carrés, le facteur de reliabilité s'abaisse jusqu'à la valeur R = 0.08 pour les 411 réflexions observées. Les positions et les facteurs d'agitation thermique isotrope des atomes sont donnés au Tableau I, les distances interatomiques au Tableau II. Au Tableau III sont comparés les facteurs de structure observés et calculés.

C	o
Ο	ō

	x(q(x))	γ (σ(ν))	z(q(z))	$B(\alpha(B))(Å^2)$		
Te	0.0411 (0.0004)	0.3909 (0.0001)	0.6428 (0.0004)	0.76 (0.03)		
V	0.680 (0.001)	0.1604 (0.0004)	0.661 (0.001)	0.69 (0.08)		
O 1	0.313 (0.005)	0.167 (0.002)	0.674 (0.005)	1.58 (0.40)		
O ₂	0.832 (0.005)	0.048 (0.001)	0.880 (0.005)	0.92 (0.40)		
O ₃	0.808 (0.005)	0.223 (0.002)	0.988 (0.005)	1.28 (0.40)		
O4	0.749 (0.005)	0.080 (0.002)	0.370 (0.005)	1.43 (0.40)		

TABLEAU I

Description de la Structure

Les Figs. 1 et 2 représentent les projections de la structure de TeVO₄ β sur les plans (001) et (100).

Le vanadium se trouve à l'intérieur d'une pyramide oxygénée à base carrée; il possède la coordinence 5 (Fig. 3). Mais un sixième atome

TABLEAU II

DISTANCES INTERATOMIQUES EN Å (erreur maximum ± 0.03 Å) DE TeVO₄ β

		The second se	
Te-Te' Te-V	3.34 3.35	V-V	3.64
$\begin{array}{c} Te-O_{2}^{\prime} \\ Te-O_{3}^{\prime} \\ Te-O_{4}^{\prime} \\ Te-O_{21} \\ Te-O_{11} \\ Te-O_{12} \end{array}$	1.87 2.02 1.85 2.20 2.95 3.19	V-O ₁ V-O ₂ V-O ₃ V-O ₄ V-O ₃ '	1.61 2.03 2.04 1.95 1.93 2.77
$\begin{array}{c} O_4'-O_3'\\ O_4'-O_2'\\ O_2'-O_{21}\\ O_4-O_2\\ O_4-O_3 \end{array}$	2.86 2.74 2.34 2.82 2.75	$\begin{array}{c} O_1 - O_2 \\ O_1 - O_3 \\ O_1 - O_4 \\ O_1 - O_3' \\ O_3 - O_2 \\ O_3 - O_3' \end{array}$	2.97 2.82 2.82 2.84 2.43 2.82

Angles de Liaisons Principaux O - Te - O (erreur maximale $\pm 1^{\circ}$) DE TeVO₄ β .

d'oxygène O'_1 situé sur l'axe A_4 de la pyramide permet de considérer ce polyèdre de coordination comme un octaèdre très allongé; cette sixième liaison V-O est cependant assez faible, en effet $V-O_{1'} = 2.77$ Å.

Les pyramides VO₅, mettent en commun deux sommets consécutifs de leurs plans de base, formant ainsi des chaînes crénelées parallèles à la direction de l'axe Oz (Fig. 2). Dans la direction Ox les chaînes de deux mailles consécutives sont

FIG. 1. Projection sur le plan (001) de la structure de la phase TeVO₄ β .

FIG. 2. Projection sur le plan (100) de la structure de la phase TeVO₄ β .

liées entre elles par les liaisons longues V-O₁.; elles forment ainsi une sorte de feuillet plissé parallèle au plan (010) et de formule $(VO_4)_n^{4n-}$. Ces feuillets se répètent dans la direction Oy avec une période b/2.

Les atomes de tellure s'insèrent entre les feuillets $(VO_4)_n^{4n-}$ assurant ainsi la cohésion de la structure. Le tellure possède la coordinence 4; il est extérieur en fait au polyèdre oxygéné formé

par les quatre oxygènes O'_3 , O'_4 , O'_2 et O_{21} (Fig. 4). On peut encore décrire ce polyèdre de coordination en admettant que le tellure se trouve au centre d'une bipyramide oxygénée, dont un sommet du plan équatorial (qui contient O'_2 , O'_4 et Te) est inoccupé. Dans ce plan équatorial deux atomes d'oxygène O_{11} et O_{12} sont à des distances Te- $O_{11} = 2.95$ Å et Te- $O_{12} = 3.19$ Å, ils sont situés de manière quasi symétrique de part et

FIG. 3. Environnement oxygéné du vanadium (distances en Å).

MEUNIER, DARRIET, ET GALY

TABLEAU III

H K L	FO FC	HKL	FU FC	нкс	FO FC
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 4 4 4 4 5 5 5 6 7 8 10 10 0	76.3 - 70.9 $85.4 - 80.6$ $115.2 - 118.3$ 71.9 33.6 $52.8 - 47.1$ $60.0 - 51.3$ $47.6 - 59.2$ $70.5 - 67.1$ $42.3 - 43.6$ $37.4 - 37.1$ $88.7 - 43.6$ $37.4 - 37.1$ $88.7 - 59.9$ $62.2 - 64.8$ $29.1 - 59.9$ $62.2 - 64.8$ $29.1 - 59.9$ $62.2 - 64.8$ $29.1 - 59.9$ $62.2 - 64.8$ $29.1 - 59.9$ $62.2 - 64.8$ $29.1 - 30.7$ $97.1 - 146.5$ $63.9 - 55.4$ $80.7 - 79.8$ $34.5 - 54.7$ $39.5 - 42.9$ $60.6 - 65.5$ $81.0 - 88.5$ $81.0 - 88.5$ $81.0 - 88.5$ $81.0 - 88.5$ $81.0 - 88.5$ $81.0 - 88.5$ $80.7 - 79.8$ $76.8 - 81.8$	$\begin{array}{c} -2 \\ -2 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1$	50.2 - 47.7 91.2 - 88.1 96.0 - 97.8 56.2 - 51.9 35.5 - 35.4 65.2 - 71.6 65.9 - 70.9 75.6 - 80.6 105.3 - 118.3 70.8 - 71.9 42.5 - 43.1 35.7 - 32.4 46.4 - 47.1 25.2 - 27.4 50.1 - 51.3 34.7 - 39.2 67.2 - 67.1 44.0 - 43.6 35.5 - 37.1 79.3 - 86.4 30.7 - 29.4 40.5 - 40.6 74.5 - 80.7 56.8 - 62.3 90.7 - 78.1 88.1 - 94.8 35.7 - 28.5 148.9 - 137.7 172.2 - 108.5 77.8 - 68.6 102.7 - 87.4 73.5 - 69.2 37.5 - 53.0 23.7 - 22.4 38.5 - 38.2
HKL	FO FC	IF K L	FU FC	нкг	FO FC
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4 0 -4 3 -4 6 -4 1 -4 2 -4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Facteurs de Structure Observés et Calculés de la Phase ${\rm TeVO_4}\beta$

н	ĸ	L	FO	FC	H	ĸ	L	FO	FC	н	ĸ	L	FO	FC	
1	1 2	1	50.5 178.9	59.8 -188.4	4	23	1 1	122.8 38.3	-116.4	-3 -3	45	1 1	51.8 106.8	-52.7 t126.7	
1	3	1	24.8	-25.6	4	4	1	22.9	-25.3	-3	8	1	34.9	36.1	
1	4	1	16./	-21.9	4	5	1	55.8	29.0	- 3	11	1	100.5	112.0	
1	2 6	1	151 8	+65.9 144 8	4	0 8	1	47.9	59.0	1	11	1	33.5	-78.5	
i	ž	î	22.0	-20.1		10	î	28.2	-30.3	- 6	ĩ	ī	69.8	76.1	
ī	8	ĩ	54.2	45.3	5	2	ī	74.0	-77.3	-4	3	1	69.5	-74.2	
1	9	1	69.4	62.5	5	5	1	44.0	48.9	- 4	5	1	72.8	-75.9	
1	10	1	15.6	-17.0	5	6	1	43.5	47.5	-4	7	1	26.2	31.9	
1	11	1	16.2	19.9	-1	1	1	131.5	142.4	-4	3	1	52.2	62.9	
1	12	-1	70.2	-76.9	-1	4	1	102 6	-00 0	-5	4	1	55.2	-57 8	
1	1.	֔.	53.2	64.6	-1	ś	î	89.7	-81.9	ó	í	2	148.4	-141.9	
2	1	ī	37.6	35.8	÷ī	G	ī	64.4	50.4	Ő	2	ž	1413	-9.8	
2	2	1	124.6	-140.0	-1	7	1	43.7	37.6	0	3	2	97.1	-192.1	
2	3	1	60.8	-61.9	-1	8	1	57.3	52.6	0	4	2	66.4	67.7	
2	4	1	26.2	+25.2	-1	10	1	61.7	54.5	0	2	2	148./	128.9	
2	2	1	112.0	113.2	-1	12	1	55.7	-47.0	0	7	2	100.3	89.1	
2	7	î	41.4	39.4	-1	13	î	45.2	-43.9	ŏ	11	2	69.9	-69.6	
2	8	î	57.6	55.7	-1	15	ī	60.6	-63.8	ō	13	2	70.6	-64.5	
2	10	ī	46.4	-44.5	-1	16	1	43.4	50.8	ō	14	2	23.6	22.5	
2	11	1	16.3	22.9	-2	1	1	111.8	115.9	0	15	2	40.9	41.9	
2	12	1	80.8	-54.9	-2	2	1	101.8	-103.0	1	1	2	46.4	-46.5	
2	15	1	22.5	-37 7	-2	2	1	40.0 27 3	-26 3	1	4	2	121 4	-122 3	
3	2	î	76.9	-69.5	-2	5	î	124.5	-129.2	î	ú	2	33.4	33.7	
3	3	ī	23.8	25.3	-2	6	ī	30.6	29.4	ī	5	2	36.6	40.8	
3	4	1	84.3	-77.7	-2	9	1	99.7	91.6	1	6	2	104.9	90.4	
3	5	1	72.9	67.4	-2	11	1	40.2	36.0	1	7	2	122.9	117.9	
ذ	- 8	1	100.7	102.0	- 2	15	1	68.7	-73.0	1	10	2	33.6	-28.9	
J	12	÷	20 2	-10.5	-2	15	1	30.9	-38 8	1	11	2	23 5	-94 8	
	1	î	40.2	-36.3	-3	ĩ	î	67.1	69.4	î	12	2	41.9	39.7	
в	к	L	FU	FC	h	κ	L	FO	FC	H	к	L	FO	FC	
						•	·,	70 0	- 63 6						
5	- L	2	5/./	-4910 UN D		2	2	19.9	-44 7	2	2		30 9	35 7	
<u>ז</u>	5	2	30.5	-32.5	-3	5	÷	40.4	35.3	1	ŝ	Ľ.	59.6	-51.0	
3	ž	ž	27.7	23.6	-3	6	3	59.8	65.1	3	7	4	48.9	-53.1	
3	9	3	105.6	-114.5	-3	7	3	25.2	21.2	3	8	4	18.4	-18.7	
3	1	3	54.9	-49.6	-3	8	3	45.7	57.7	4	0	4	24.0	-19.1	
4	1	3	54.0	-48.4		.9	2	50.9	-6/./		1	4	27.6	27.7	
4	2	2	61.7	61.3		10	2	69.5	-40./	-1	2	- 14 L	78 8	-75 -	
1	ŝ	ś	54.4	58.0	-4	2	ŝ	101.0	-109.8	-1	ĭ	4	15.0	16.9	
4	6	3	47.1	-43.8	-4	G	3	79.1	69.3	-1	2	4	50.9	-45.7	
-1	1	3	73.1	-89.9	0	1	4	65.7	72.3	-1	3	4	48.7	43.0	
-1	2	3	109.1	-120.1	0	2	4	29.6	-31.4	-1	4	-	75.Z	79.1	
-1	5	5	65./	65.9	0	5	4	48.1	45.8	-1	6		80.0	84.I	
-1	2	7	97.5	92.0		5	4. L	56 4	-47 3	-1	10	2	87 8	-12 2	
-1	8	ś	38.1	38.1	ő	6	4	36.2	32.5	-1	12	- i	49.7	47.1	
-1	9	3	62.8	-59.6	ġ	8	4	49.3	-41.8	-7	9	4	85.1	-93.6	
-1	11	3	39.9	-31.6	0	10	4	39.0	-43.1	-2	1	4	38.3	-44.1	
-1	12	3	39.5	-35.4	1	3	4	38.6	33.6	-2	4	4	78.9	87.2	
-1	12	2	26 5	+1./ -22 8	1	6	ч Б	02.8 35 a	70.D 31 7	-2	2	4 1	PJ 0	72.6	
-2	ĩ	ŝ	62.5	-71.5	1	7	4	92.7	-90.2	-2	ž	ī	61.5	-69.1	
-2	2	3	57.0	-68.0	ĩ	8	4	50.0	-46.0	-2	1Ō	4	68.4	-66.6	
-2	3	3	82.8	80.1	1	10	4	47.3	-41.8	-3	5	4	97.1	-110.8	
-2	4	3	41.3	-40.7	ľ	11	4	77.2	80.8	-3	3	4	35.3	-30.9	
-2	2	2	54.1	48.4	2	с 6	44 L	50.0 50 E	03.0 51 P		;	Ц. Ц	60.5 1.0 7	66.9 12 A	
-7	7	ŝ	21.5	-22.9	2	7	4	80.3	-84.0	-3	8	4	49.5	-52.3	
-2	8	3	78.5	80.7	2	8	4	44.6	-45.8	-4	ō	4	50.1	-48.2	
-2	9	3	38.3	-34.1	2	10	4	58.0	-59.7	=4	3	4	40.6	-44.2	
- 2	10	3	58.6	->8.3	2	11	4	63.3	62.6	- 4	4	4	41.3	46.4	
-2	14	2	22.0	-24.1	2	0		49.9	-42.6	- 4	D	- 4	>2.0	>>.5	

FIG. 4. Environnement oxygéné du tellure (distances en Å).

d'autre du sommet inoccupé de la bipyramide (Fig. 4). On peut penser que ces oxygènes sont repoussés par le doublet non engagé du tellure.

Les polyèdres $(TeO_4)^{4-}$ sont reliés par l'intermédiaire d'une arête commune O'_2-O_{21} et forment un groupement $[Te_2O_6]^{4-}$ (Fig. 5).

Discussion. Relations Structurales

TeVO₄ β présente quelques ressemblances avec la phase triclinique BiNbO₄ et le fluorure BaZnF₄ dont les structures ont été déterminées respectivement par Keve et Skapski (2) et par Schnering et Bleckmann (3). On retrouve en effet des feuillets plissés de formule [BX₄]_n, entre lesquels s'insèrent le tellure, le bismuth ou le baryum. Ces feuillets

FIG. 5. Groupement [Te₂O₆]⁴⁻.

peuvent être dérivés à partir de la structure de type ReO_3 si on découpe celle-ci selon le mode indiqué par les flèches (Fig. 6).

Dans le même esprit on constate une analogie entre la structure de la variété basse température TeVO₄ α et la structure de type PbO₂ α .

Dans les deux structures on retrouve des chaînes similaires d'octaèdres MO_6 associés par des arêtes. Dans $PbO_2\alpha$ ces chaînes $(PbO_4)_n$ sont liées les unes aux autres par l'intermédiaire de sommets communs (Fig. 7). Dans $TeVO_4\alpha$ elles sont isolées, mais avec une orientation analogue à celle de $PbO_2\alpha$, les atomes de tellure assurant la cohésion de la maille en les reliant entre elles.

FIG. 6. Relation structurale entre ReO₃ et TeVO₄ β .

FIG. 7. Relation structurale entre PbO₂ α et TeVO₄ α .

FIG. 8. Relation structurale entre PdF₃ et SbNbO₄.

Les structures des deux variétés α et β de TeVO₄ sont bâties sur les mêmes principes structuraux:

(1) Un sous-réseau construit autour de l'élément de transition et dérivant de structures simples comme ReO_3 et $\text{PbO}_2\alpha$; et

(2) Le tellure s'insère dans ce réseau sans perturber son orientation.

La structure de SbNbO₄ déterminée par Skapski et Rogers (4) peut se déduire de la structure type PdF₃ selon les mêmes principes (Fig. 8). Elle est formée de feuillets $(NbO_4)_n^{3n-}$ entre lesquels s'insèrent l'antimoine +III. L'antimoine +III comme le tellure +IV est caractérisé par un doublet non engagé.

Récemment l'un d'entre nous (5) a donné quelques exemples de phases, toutes caractériseés par la présence d'un élément ayant un doublet non engagé dont la structure peut se déduire partiellement de structures simples comme la fluorine, le rutile, $PbO_2\alpha$ et PdF_3 .

Bibliographie

- G. MEUNIER, J. DARRIET, ET J. GALY, J. Solid State Chem., 5, 314, 1972.
- 2. E. T. KEVE ET A. C. SKAPSKI, Chem. Commun. 281 (1967).
- H. G. V. SCHNERING ET P. BLECKMANN, Naturwissenschaften 55, 342 (1968).
- 4. A. C. SKAPSKI ET D. ROGERS, Chem. Commun., 611 (1965).
- 5. J. GALY, Fifth Materials Research Symposium, National Bureau of Standards, Washington, D.C., 29 (1971).